Atomistic insights into rhodopsin activation from a dynamic model.

نویسندگان

  • Irina G Tikhonova
  • Robert B Best
  • Stanislav Engel
  • Marvin C Gershengorn
  • Gerhard Hummer
  • Stefano Costanzi
چکیده

Rhodopsin, the light sensitive receptor responsible for blue-green vision, serves as a prototypical G protein-coupled receptor (GPCR). Upon light absorption, it undergoes a series of conformational changes that lead to the active form, metarhodopsin II (META II), initiating a signaling cascade through binding to the G protein transducin (G(t)). Here, we first develop a structural model of META II by applying experimental distance restraints to the structure of lumi-rhodopsin (LUMI), an earlier intermediate. The restraints are imposed by using a combination of biased molecular dynamics simulations and perturbations to an elastic network model. We characterize the motions of the transmembrane helices in the LUMI-to-META II transition and the rearrangement of interhelical hydrogen bonds. We then simulate rhodopsin activation in a dynamic model to study the path leading from LUMI to our META II model for wild-type rhodopsin and a series of mutants. The simulations show a strong correlation between the transition dynamics and the pharmacological phenotypes of the mutants. These results help identify the molecular mechanisms of activation in both wild type and mutant rhodopsin. While static models can provide insights into the mechanisms of ligand recognition and predict ligand affinity, a dynamic model of activation could be applicable to study the pharmacology of other GPCRs and their ligands, offering a key to predictions of basal activity and ligand efficacy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensory rhodopsin II: functional insights from structure.

Atomic resolution structures of a sensory rhodopsin phototaxis receptor in haloarchaea (the first sensory member of the widespread microbial rhodopsin family) have yielded insights into the interaction face with its membrane-embedded transducer and into the mechanism of spectral tuning. Spectral differences between sensory rhodopsin and the light-driven proton pump bacteriorhodopsin depend larg...

متن کامل

Model structures of inactive and peptide agonist bound C5aR: Insights into agonist binding, selectivity and activation

C5a receptor (C5aR) is one of the major chemoattractant receptors of the druggable proteome that binds C5a, the proinflammatory polypeptide of complement cascade, triggering inflammation and SEPSIS. Here, we report the model structures of C5aR in both inactive and peptide agonist (YSFKPMPLaR; a=D-Ala) bound meta-active state. Assembled in CYANA and evolved over molecular dynamics (MD) in POPC b...

متن کامل

Effects of different atomistic water models on the velocity profile and density number of Poiseuille flow in a nano-channel: Molecular Dynamic Simulation

In the current study, five different atomistic water models (AWMs) are implemented, In order to investigate the impact of AWMs treatment on the water velocity profile and density number. For this purpose, Molecular dynamics simulation (MDS) of Poiseuille flow in a nano-channel is conducted. Considered AWMs are SPC/E, TIP3P, TIP4P, TIP4PFQ and TIP5P. To assessment of the ability of each model in...

متن کامل

Predisposition of the dark state of rhodopsin to functional changes in structure.

As the only member of the family of G-protein-coupled receptors for which atomic coordinates are available, rhodopsin is widely studied for insight into the molecular mechanism of G-protein-coupled receptor activation. The currently available structures refer to the inactive, dark state, of rhodopsin, rather than the light-activated metarhodopsin II (Meta II) state. A model for the Meta II stat...

متن کامل

Study of Stone-wales Defect on Elastic Properties of Single-layer Graphene Sheets by an Atomistic based Finite Element Model

In this paper, an atomistic based finite element model is developed to investigate the influence of topological defects on mechanical properties of graphene. The general in-plane stiffness matrix of the hexagonal network structure of graphene is found. Effective elastic modulus of a carbon ring is determined from the equivalence of molecular potential energy related to stretch and angular defor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 130 31  شماره 

صفحات  -

تاریخ انتشار 2008